

GOVERNMENT OF ANDHRA PRADESH COMMISSIONERATE OF COLLEGIATE EDUCATION

SOLID GEOMETRY

THE PLANE

MATHEMATICS

GOGULAMUDI.SYAM PRASAD REDDY, M.Sc.,M.Phil.,B.Ed.,SET

P.R.GOVT.COLLEGE(A):KAKINADA Email ID :syam.g.reddy@gmail.com

THE PLANE

Learning Objectives

Students will be able to recognize the following properties of the Plane:

- ➤ Identify points, rays and segments using words and symbols.
- > Knowing the general equation of a plane.
- ➤ Understand the transformation of the equation to the plane into normal form.
- > Identify angles between the two planes.
- ➤ Identify the condition of parallelism.
- ➤ Identify the condition of perpendicularity.

THE PLANE

Def: A Plane is a surface such that if any two points are taken on it, the line joining them lies wholly on the surface.

The general equation of first degree in x, y, z always represents a plane.

Proof:

Let ax + by + cz + d = 0, $a^2 + b^2 + c^2 \neq 0$, be the first degree equation in x, y, z (1)

If we have to show that (1) represents the equation to the plane, we prove that every point on the line joining any two points on (1) also lies on the locus (1).

Let $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ be any two points on the locus represented by (1), then

$$ax_1 + by_1 + cz_1 + d = 0$$
(2)

$$ax_2 + by_2 + cz_2 + d = 0$$
(3)

Let R be any point on the line segment joining the points P and Q. Suppose R divides PQ in the then $R = \left(\frac{\lambda x_2 + x_1}{\lambda + 1}, \frac{\lambda y_2 + y_1}{\lambda + 1}, \frac{\lambda z_2 + z_1}{\lambda + 1}\right)$, $\lambda + 1 \neq 0$.

We have to show that R lies on the locus (1) for all values of λ . Substituting the coordinates of R in the LHS of (1), we get

$$a\frac{(\lambda x_2 + x_1)}{\lambda + 1} + b\frac{(\lambda y_2 + y_1)}{\lambda + 1} + c\frac{(\lambda z_2 + z_1)}{\lambda + 1} + d$$

$$= \frac{a(\lambda x_2 + x_1) + b(\lambda y_2 + y_1) + c(\lambda z_2 + z_1) + d(\lambda + 1)}{\lambda + 1}$$

$$= \frac{\lambda(ax_2 + by_2 + cz_2) + (ax_1 + by_1 + cz_1 + d)}{\lambda + 1}$$

$$= \frac{\lambda(0) + 0}{\lambda + 1}$$

$$= 0$$

Which shows that R lies on the locus (1).

Since R is an arbitrary point on the line joining P and Q, every point on PQ lie Therefore the equation ax + by + cz + d = 0, $a^2 + b^2 + c^2 \neq 0$ always represent

TRANSFORMATION OF THE EQUATION TO THE PLANE INTO NORMAL FORM

Let the equation to the plane be ax + by + cz + d = 0, $a^2 + b^2 + c^2 \neq 0$ (1)

We can take $d \ge 0$ or $d \le 0$.

$$ax + by + cz + d = 0 \Leftrightarrow ax + by + cz = -d$$
.

Dividing $\sqrt{a^2 + b^2 + c^2}$, we get, we get

$$\frac{-a}{\sqrt{a^2 + b^2 + c^2}} x + \frac{-b}{\sqrt{a^2 + b^2 + c^2}} y + \frac{-c}{\sqrt{a^2 + b^2 + c^2}} z = \frac{d}{\sqrt{a^2 + b^2 + c^2}}$$
Or
$$\frac{a}{\sqrt{a^2 + b^2 + c^2}} x + \frac{b}{\sqrt{a^2 + b^2 + c^2}} y + \frac{c}{\sqrt{a^2 + b^2 + c^2}} z = -\frac{d}{\sqrt{a^2 + b^2 + c^2}}$$
....(3)

This is of the form
$$1x + my + nz = p \ (p \ge 0)$$

Where $l = \pm \frac{a}{\sqrt{\sum a^2}}$, $m = \pm \frac{b}{\sqrt{\sum b^2}}$, $n = \pm \frac{c}{\sqrt{\sum c^2}}$, $p = \mp \frac{d}{\sqrt{\sum a^2}}$

Therefore the normal form the equation to the plane (1) is

$$\pm \frac{ax}{\sqrt{\sum a^2}} \pm \frac{by}{\sqrt{\sum b^2}} \pm \frac{cz}{\sqrt{\sum c^2}} = \mp \frac{d}{\sqrt{\sum a^2}} (d \le 0 \text{ or } d \ge 0)$$

Theorem: If the equation $a_1x + b_1y + c_1z + d_1 = 0$, $a_2x + b_2y + c_2z + d_2 = 0$ represents the same plane, then $a_1 : b_1 : c_1 : d_1 = a_2 : b_2 : c_2 : d_2$.

Proof: Given equations are $a_1x + b_1y + c_1z + d_1 = 0$ (1)

$$a_2x + b_2y + c_2z + d_2 = 0 \dots (2)$$

 \therefore (a₁, b₁, c₁), (a₂, b₂, c₂) are d.rs. of normal's to the same plane.

Since the normal's are either equal (coincident) or parallel.

We have $a_1 : a_2 = b_1 : b_2 = c_1 : c_2 = \lambda$ (say) $(\lambda \neq 0)$ or $(a_1, b_1, c_1) = \lambda$ (a_2, b_2, c_2) .

Let (x_1, y_1, z_1) be any point in the plane represented by (1) and (2).

$$\therefore d_1 = -(a_1x_1 + b_1y_1 + c_1z_1)$$

$$= -(a_1, b_1, c_1).(x_1, y_1, z_1)$$

$$= -\lambda (a_2, b_2, c_2). (x_1, y_1, z_1)$$

$$= -\lambda (a_2x + b_2y + c_2z)$$

$$= \lambda d_2$$

$$\therefore a_1 : b_1 : c_1 : d_1 = a_2 : b_2 : c_2 : d_2.$$
 Or $a_1 : a_2 = b_1 : b_2 = c_1 : c_2 = d_1 : d_2.$

ANGLES BETWEEN TWO PLANES

Definition: Angles between two planes are equal to the angles between their normals.

Let the equations to the plane be $a_1x + b_1y + c_1z + d_1 = 0$ (1)

$$a_2x + b_2y + c_2z + d_2 = 0 \dots (2)$$

Dc's of the normal to (1)= $m_1 = (\frac{a_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}}, \frac{b_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}}, \frac{c_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}})$

and Dc's of the normal to (2) =
$$m_2 = (\frac{a_2}{\sqrt{a_2^2 + b_2^2 + c_2^2}}, \frac{b_2}{\sqrt{a_2^2 + b_2^2 + c_2^2}}, \frac{c_2}{\sqrt{a_2^2 + b_2^2 + c_2^2}})$$

Let θ be one of the angles between the planes.

 θ = one of the angles between the normal's m_1 , m_2

$$= \cos^{-1}(\frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}})$$

The other angle between the planes is 180° - θ .

CONDITION OF PARALLELISM

Planes are parallel
$$\Rightarrow \theta = 0^{\circ}$$
 or $180^{\circ} \Rightarrow \pm 1 = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$

$$\Rightarrow (a_1^2 + b_1^2 + c_1^2)(a_2^2 + b_2^2 + c_2^2) = (a_1a_2 + b_1b_2 + c_1c_2)^2$$

$$\Rightarrow a_1^2b_2^2 + a_1^2c_2^2 + b_1^2a_2^2 + b_1^2c_2^2 + c_1^2a_2^2 + c_1^2b_2^2 - 2a_1a_2b_1b_2 - 2b_1b_2c_1c_2 - 2c_1c_2a_1a_2 = 0$$

$$\Rightarrow (a_1b_2 - a_2b_1)^2 + (b_1c_2 - b_2c_1)^2 + (c_1a_2 - c_2a_1)^2 = 0$$

$$\Rightarrow a_1b_2 - a_2b_1 = b_1c_2 - b_2c_1 = c_1a_2 - c_2a_1 = 0$$

$$\Rightarrow a_1: a_2 = b_1: b_2 = c_1: c_2$$

OR Planes are parallel \Rightarrow their normal's are parallel

⇒ d.rs of normal's are proportional

$$\Rightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2$$

CONDITION OF PERPENDICULARITY

Planes are perpendicular $\Rightarrow \theta = 90^{\circ} \Rightarrow$

OR Planes are perpendicular \Rightarrow their normal's are perpendicular

$$\Rightarrow$$
 (a₁, b₁, c₁).(a₂, b₂, c₂) = 0

$$\Rightarrow a_1a_2 + b_1b_2 + c_1c_2 = 0$$

Note. 1. The equations $a_1x + b_1y + c_1z + d_1 = 0$, $a_1x + b_1y + c_1z + d_2 = 0$ represents a pair of parallel planes.

2. A plane parallel to ax + by + cz + d = 0 is ax + by + cz = k, where k is an unknown real number.

The equation of the plane through the point (x_1, y_1, c_1) and parallel to the plane cz + d = 0 is $ax + by + cz = ax_1 + by_1 + cz_1$.

Definition:

If a plane π intersects the coordinate axes at (a, 0, 0), (0, b, 0), (0, 0, c) then a, b, c are respectively called the x-intercept, the y-intercepts, the z-intercepts of the plane π . If the plane 1x + my + nz = p intersects the x-axis at (a, 0, 0), then its x- intercept 1x + my + nz = p intersects the x-axis at 1x + my + nz = p intersects the x-axis at 1x + mz + nz = p. Similarly its y-intercept 1x + mz + nz = p intersects the x-axis at 1x + mz + nz = p. Similarly its y-intercept 1x + mz + nz = p intersects the x-axis at 1x + mz + nz = p. Similarly its y-intercept 1x + mz + nz = p intersects the x-axis at 1x + mz + nz = p. Similarly its y-intercept 1x + mz + nz = p intersects the x-axis at 1x + mz + nz = p. Similarly its y-intercept 1x + mz + nz = p intersects the x-axis at 1x + mz + nz = p intersects the

THEOREM. Equation to the plane making intercepts a, b, c on the coordinates axes is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

Proof. Let π be the plane making intercepts a, b, c on the coordinate axis.

Let
$$A = (a, 0, 0)$$
, $B = (0, b, 0)$ and $C = (0, 0, c)$.

∴ abc \neq 0. Clearly A, B, C are non-collinear.

Let the equation to the plane π in the normal form be lx + my + nz = p (1).

Let M be the foot of the perpendicular from O to π and let (l, m, n) be the Dc's of OM.

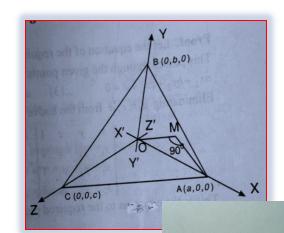
Let OM = p = Projection of OA on OM = al

Similarly p = bm, and p = cn.

: from (1), equation to the plane π is $\frac{p}{a}x + \frac{p}{b}y + \frac{p}{c}z = p \Rightarrow \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

Note. Equation to the plane ABC is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

This is called the intercept form of the equation to the plane and this plane does through the origin.



Thank you